Aplikasi Counter
- Untuk menyelesaikan tugas mata kuliah sistem digital yang diberikan oleh Bapak Dr. Darwison,M.T.
- Mampu mengaplikasikan Circuit A/D Converters
- Mampu membuat rangkaian Circuit A/D Converters
A. Alat
1. Power Supply1. Daya listrik (Power supply): Ini mengacu pada daya yang diberikan oleh sumber listrik ke peralatan elektronik. Daya ini diukur dalam watt (W). Spesifikasi daya listrik mencakup tegangan input yang diperlukan (misalnya 110V atau 220V AC) dan frekuensi (misalnya 50Hz atau 60Hz).2. Konsumsi daya (Power consumption): Ini adalah jumlah daya yang dikonsumsi oleh peralatan elektronik saat beroperasi. Konsumsi daya juga diukur dalam watt (W) dan umumnya dicantumkan dalam spesifikasi produk. Informasi ini membantu untuk mengetahui berapa banyak daya yang diperlukan oleh peralatan tersebut dan mempengaruhi kebutuhan daya listrik yang dibutuhkan.3. Daya output (Power output): Jika Anda merujuk pada peralatan yang menghasilkan daya, seperti power amplifier atau power bank, spesifikasi power output akan memberikan informasi tentang daya yang dihasilkan oleh perangkat tersebut. Ini juga diukur dalam watt (W) dan mungkin mencakup spesifikasi daya maksimum dan daya kontinu yang dapat dihasilkan.2. Voltmeter DC1. Rentang pengukuran: Ini mengacu pada rentang tegangan yang dapat diukur oleh voltmeter. Misalnya, voltmeter mungkin memiliki rentang pengukuran antara 0 hingga 10 volt atau 0 hingga 1000 volt2. Akurasi: Ini adalah tingkat ketepatan voltmeter dalam mengukur tegangan. Akurasi biasanya dinyatakan dalam persentase kesalahan maksimum. Sebagai contoh, voltmeter mungkin memiliki akurasi ±1% yang berarti kesalahan maksimum yang mungkin terjadi adalah 1% dari nilai yang diukur.3. Resolusi: Resolusi mengacu pada jumlah digit yang ditampilkan pada voltmeter. Resolusi yang lebih tinggi berarti voltmeter dapat menampilkan angka yang lebih rinci. Sebagai contoh, voltmeter dengan resolusi 3 digit dapat menampilkan angka hingga tiga angka di belakang koma.4. Impedansi input: Ini adalah resistansi internal voltmeter terhadap arus listrik yang melewati alat. Impedansi input yang lebih tinggi pada voltmeter memungkinkan pengukuran tegangan yang lebih akurat tanpa mengganggu sirkuit yang sedang diukur.5. Jenis input: Voltmeter dapat dirancang untuk mengukur tegangan searah (DC) atau tegangan bolak-balik (AC). Beberapa voltmeter juga dapat mengukur kedua jenis tegangan.3. BatterySpesifikasi :- Input voltage: ac 100~240v / dc 10~30v- Output voltage: dc 1~35v- Max. Input current: dc 14a- Charging current: 0.1~10a- Discharging current: 0.1~1.0a- Balance current: 1.5a/cell max- Max. Discharging power: 15w- Max. Input current: dc 14a- Jenis batre yg didukung: life, lilon, lipo 1~6s, lihv 1-6s, pb 1-12s, nimh, cd 1-16s- Ukuran: 126x115x49mm- Berat: 460grBAHAN1. ResistorSpesifikasi :Resistance (ohms) : 10K, 500KPower (Watts) : 0.25W, 1/4WTolerance : -+ 5%Packaging : BulkComposition : Carbon FilmTemperature Coefficient : 350 ppm/CLead free status : Lead freeRoHS status : RoHS Compliant
2. DiodaSpesifikasi :- Package Type : Available in DO-41 & SMD package- Diode TYpe : Silicon rectifier general usage diode- Max repetitive reverse voltage : 1000 volts- Average Fwd Current : 1000 mA- Non-repetitive max Fwd current : 30A- Max power disipation : 3 W- Max storage & operating temperature should be : -55 to +175 Centigrade3. TransistorSpesifikasi :- Jenis Paket: TO-92- Jenis Transistor: NPN- Arus Kolektor Maks (IC): 100mA- Tegangan Kolektor-Emitor Maks (VCE): 45V- Tegangan Kolektor-Basis Maks (VCB): 50V- Tegangan Basis Emitor Maks (VEBO): 6V- Disipasi Kolektor Maks (Pc): 500 miliWatt- Frekuensi Transisi Maks (ft): 300 MHz- Penguatan Arus DC Minimum & Maksimum (hFE): 110 – 800- Penyimpanan Maks & Suhu Pengoperasian Harus: -65 hingga +150 Celcius4. D Flip-FlopTabel kebenaran5. RelaySpesifikasi :- Tegangan pemicu (tegangan kumparan) 5V- Arus pemicu 70mA- Beban maksimum AC 10A @ 250 / 125V- Maksimum baban DC 10A @ 30 / 28V- Switching maksimum6. Motor DCSpesifikasi- Standard 130 Type DC motor- Operating Voltage: 4.5V to 9V- Recommended/Rated Voltage: 6V- Current at No load: 70mA (max)- No-load Speed: 9000 rpm- Loaded current: 250mA (approx)- Rated Load: 10g*cm- Motor Size: 27.5mm x 20mm x 15mm- Weight: 17 grams7. OP-Amp LM741Spesifikasi- Penguatan Tegangan Open-loop atau Av = ∞ (tak terhingga)- Tegangan Offset Keluaran (Output Offset Voltage) atau VOO = 0 (nol)- Impedansi Masukan (Input Impedance) atau Zin= ∞ (tak terhingga)- Karakteristik tidak berubah dengan suhu)- Lebar Pita (Bandwidth) atau BW = ∞ (tak terhingga)8. Gerbang NOT (inverter)9. PotensiometerSpesifikasi- Standard 130 Type DC motor1. Nilai Resistansi: Spesifikasi ini mencantumkan nilai resistansi potensiometer. Nilai resistansi dapat bervariasi, misalnya, potensiometer 10K memiliki resistansi 10.000 ohm (10 kiloohm). Nilai resistansi ini menentukan rentang resistansi yang dapat disesuaikan oleh potensiometer.2. Toleransi: Toleransi resistansi mengacu pada kisaran persentase di mana nilai resistansi potensiometer dapat bervariasi dari nilai yang ditentukan. Misalnya, jika potensiometer memiliki toleransi ±10%, maka nilai resistansi yang sebenarnya dapat berbeda hingga 10% dari nilai yang ditentukan.3. Daya nominal: Ini adalah daya maksimum yang dapat ditangani oleh potensiometer tanpa merusak komponen. Daya biasanya diukur dalam watt (W) dan memberikan gambaran tentang seberapa besar potensiometer dapat menangani arus listrik tanpa mengalami overheating atau kerusakan.4. Jenis Potensiometer: Ada beberapa jenis potensiometer yang tersedia, termasuk potensiometer linier dan potensiometer logaritmik (log potensiometer). Jenis potensiometer ini memiliki kurva resistansi yang berbeda saat putaran atau penggeseran digunakan.5. Jumlah Putaran: Potensiometer dengan lebih dari satu putaran memberikan presisi yang lebih tinggi dalam mengatur resistansi. Jumlah putaran biasanya dinyatakan dalam putaran lengkap atau putaran parsial (misalnya, 1 putaran, 10 putaran, 270 derajat, dll.).10. LEDSpesifikasi- Superior weather resistance- 5mm Round Standard Directivity- UV Resistant Eproxy- Forward Current (IF): 30mA- Forward Voltage (VF): 1.8V to 2.4V- Reverse Voltage: 5V- Operating Temperature: -30℃ to +85℃- Storage Temperature: -40℃ to +100℃- Luminous Intensity: 20mcdKonfigurasi Pin- Pin 1 : Positive terminal of LED- Pin 2 : Negative terminal of LED11. Gerbang ANDIC 7411 memiliki 3 gerbang AND dengan tida input dari keluarga transistor12. Sensor PIRSpesifikasi- Tegangan: 5V-20V- Konsumsi daya: 65 mA- TTL output: 3,3 V, 0V- Waktu tunda: dapat disesuaikan (.3->5 menit)- Waktu penguncian: 0,2 detik- Metode pemicu: l - nonaktifkan pemicu berulang, H aktifkan pemicu berulang- Rentang penginderaan: kurang dari 120 derajat, dalam jarak 7 meter- Suhu: -15 ° ~ 70- Dimensi: 32*24 mm, jarak antara sekrup 28mm, M2, Dimensi lensa diameter: 23mm
- Resistor
Resistor merupakan komponen elektronika dasar yang digunakan untuk membatasi jumlah arus yang mengalir dalam satu rangkaian.Sesuai dengan namanya, resistor bersifat resistif dan umumnya terbuat dari bahan karbon. Resistor memiliki simbol seperti gambar dibawah ini :
Resistor mempunyai nilai resistansi (tahanan) tertentu yang dapat memproduksi tegangan listrik di antara kedua pin dimana nilai tegangan terhadap resistansi tersebut berbanding lurus dengan arus yang mengalir, berdasarkan persamaan Hukum OHM :
Rumus Resistor:Seri : Rtotal = R1 + R2 + R3 + ….. + Rn
Dimana :
Rtotal = Total Nilai Resistor
R1 = Resistor ke-1
R2 = Resistor ke-2
R3 = Resistor ke-3
Rn = Resistor ke-n
Paralel: 1/Rtotal = 1/R1 + 1/R2 + 1/R3 + ….. + 1/Rn
Dimana :
Rtotal = Total Nilai Resistor
R1 = Resistor ke-1
R2 = Resistor ke-2
R3 = Resistor ke-3
Rn = Resistor ke-n
- Dioda
Dioda adalah komponen elektronika yang terdiri dari dua kutub dan berfungsi menyearahkan arus. Komponen ini terdiri dari penggabungan dua semikonduktor yang masing-masing diberi doping (penambahan material) yang berbeda, dan tambahan material konduktor untuk mengalirkan listrik.Dioda memiliki simbol sebagai berikut :
Seri : Rtotal = R1 + R2 + R3 + ….. + Rn
Dimana :
Rtotal = Total Nilai Resistor
R1 = Resistor ke-1
R2 = Resistor ke-2
R3 = Resistor ke-3
Rn = Resistor ke-n
Paralel: 1/Rtotal = 1/R1 + 1/R2 + 1/R3 + ….. + 1/Rn
Dimana :
Rtotal = Total Nilai Resistor
R1 = Resistor ke-1
R2 = Resistor ke-2
R3 = Resistor ke-3
Rn = Resistor ke-n
- Dioda
Cara Kerja Dioda
Secara sederhana, cara kerja dioda dapat dijelaskan dalam tiga kondisi, yaitu kondisi tanpa tegangan (unbiased), diberikan tegangan positif (forward biased), dan tegangan negatif (reverse biased).
Secara sederhana, cara kerja dioda dapat dijelaskan dalam tiga kondisi, yaitu kondisi tanpa tegangan (unbiased), diberikan tegangan positif (forward biased), dan tegangan negatif (reverse biased).
A. Kondisi tanpa tegangan
Pada kondisi tidak diberikan tegangan akan terbentuk suatu perbatasan medan listrik pada daerah P-N junction. Hal ini terjadi diawali dengan proses difusi, yaitu bergeraknya muatan elektro dari sisi n ke sisi p. Elektron-elektron tersebut akan menempati suatu tempat di sisi p yang disebut dengan holes. Pergerakan elektron-elektron tersebut akan meninggalkan ion positif di sisi n, dan holes yang terisi dengan elektron akan menimbulkan ion negatif di sisi p. Ion-ion tidak bergerak ini akan membentuk medan listrik statis yang menjadi penghalang pergerakan elektron pada dioda.
B. Kondisi tegangan positif (Forward-bias)Pada kondisi ini, bagian anoda disambungkan dengan terminal positif sumber listrik dan bagian katoda disambungkan dengan terminal negatif. Adanya tegangan eksternal akan mengakibatkan ion-ion yang menjadi penghalang aliran listrik menjadi tertarik ke masing-masing kutub. Ion-ion negatif akan tertarik ke sisi anoda yang positif, dan ion-ion positif akan tertarik ke sisi katoda yang negatif. Hilangnya penghalang-penghalang tersebut akan memungkinkan pergerakan elektron di dalam dioda, sehingga arus listrik dapat mengalir seperti pada rangkaian tertutup.
Pada kondisi tidak diberikan tegangan akan terbentuk suatu perbatasan medan listrik pada daerah P-N junction. Hal ini terjadi diawali dengan proses difusi, yaitu bergeraknya muatan elektro dari sisi n ke sisi p. Elektron-elektron tersebut akan menempati suatu tempat di sisi p yang disebut dengan holes. Pergerakan elektron-elektron tersebut akan meninggalkan ion positif di sisi n, dan holes yang terisi dengan elektron akan menimbulkan ion negatif di sisi p. Ion-ion tidak bergerak ini akan membentuk medan listrik statis yang menjadi penghalang pergerakan elektron pada dioda.
Pada kondisi ini, bagian anoda disambungkan dengan terminal positif sumber listrik dan bagian katoda disambungkan dengan terminal negatif. Adanya tegangan eksternal akan mengakibatkan ion-ion yang menjadi penghalang aliran listrik menjadi tertarik ke masing-masing kutub. Ion-ion negatif akan tertarik ke sisi anoda yang positif, dan ion-ion positif akan tertarik ke sisi katoda yang negatif. Hilangnya penghalang-penghalang tersebut akan memungkinkan pergerakan elektron di dalam dioda, sehingga arus listrik dapat mengalir seperti pada rangkaian tertutup.
C. Kondisi tegangan negatif (Reverse-bias)
Pada kondisi ini, bagian anoda disambungkan dengan terminal negatif sumber listrik dan bagian katoda disambungkan dengan terminal positif. Adanya tegangan eksternal akan mengakibatkan ion-ion yang menjadi penghalang aliran listrik menjadi tertarik ke masing-masing kutub. Pemberian tegangan negatif akan membuat ion-ion negatif tertarik ke sisi katoda (n-type) yang diberi tegangan positif, dan ion-ion positif tertarik ke sisi anoda (p-type) yang diberi tegangan negatif. Pergerakan ion-ion tersebut searah dengan medan listrik statis yang menghalangi pergerakan elektron, sehingga penghalang tersebut akan semakin tebal oleh ion-ion. Akibatnya, listrik tidak dapat mengalir melalui dioda dan rangkaian diibaratkan menjadi rangkaian terbuka.
Pada kondisi ini, bagian anoda disambungkan dengan terminal negatif sumber listrik dan bagian katoda disambungkan dengan terminal positif. Adanya tegangan eksternal akan mengakibatkan ion-ion yang menjadi penghalang aliran listrik menjadi tertarik ke masing-masing kutub. Pemberian tegangan negatif akan membuat ion-ion negatif tertarik ke sisi katoda (n-type) yang diberi tegangan positif, dan ion-ion positif tertarik ke sisi anoda (p-type) yang diberi tegangan negatif. Pergerakan ion-ion tersebut searah dengan medan listrik statis yang menghalangi pergerakan elektron, sehingga penghalang tersebut akan semakin tebal oleh ion-ion. Akibatnya, listrik tidak dapat mengalir melalui dioda dan rangkaian diibaratkan menjadi rangkaian terbuka.
Rumus
- Transistor NPN
Transistor adalah alat semikonduktor yang dipakai sebagai penguat, sebagai sirkuit pemutus dan penyambung arus (switching), stabilisasi tegangan, dan modulasi sinyal. Transistor dapat berfungsi semacam kran listrik, di mana berdasarkan arus inputnya (BJT) atau tegangan inputnya (FET), memungkinkan pengaliran listrik yang sangat akurat dari sirkuit sumber listriknya. Kapasitor NPN memiliki simbol seperti gambar di bawah ini:Terdapat rumus rumus dalam mencari transistor seperti rumus di bawah ini:Rumus dari Transitor adalah :
hFE = iC/iB
dimana, iC = perubahan arus kolektor
iB = perubahan arus basis
hFE = arus yang dicapai
- Transistor NPN
Rumus dari Transitor adalah :
hFE = iC/iB
dimana, iC = perubahan arus kolektor
iB = perubahan arus basis
hFE = arus yang dicapai
Karakteristik Input
Transistor adalah komponen aktif yang menggunakan aliran electron sebagai prinsip kerjanya didalam bahan. Sebuah transistor memiliki tiga daerah doped yaitu daerah emitter, daerah basis dan daerah disebut kolektor. Transistor ada dua jenis yaitu NPN dan PNP. Transistor memiliki dua sambungan: satu antara emitter dan basis, dan yang lain antara kolektor dan basis. Karena itu, sebuah transistor seperti dua buah dioda yang saling bertolak belakang yaitu dioda emitter-basis, atau disingkat dengan emitter dioda dan dioda kolektor-basis, atau disingkat dengan dioda kolektor.
Bagian emitter-basis dari transistor merupakan dioda, maka apabila dioda emitter-basis dibias maju maka kita mengharapkan akan melihat grafik arus terhadap tegangan dioda biasa. Saat tegangan dioda emitter-basis lebih kecil dari potensial barriernya, maka arus basis (Ib) akan kecil. Ketika tegangan dioda melebihi potensial barriernya, arus basis (Ib) akan naik secara cepat.
Karakteristik OutputSebuah transistor memiliki empat daerah operasi yang berbeda yaitu daerah aktif, daerah saturasi, daerah cutoff, dan daerah breakdown. Jika transistor digunakan sebagai penguat, transistor bekerja pada daerah aktif. Jika transistor digunakan pada rangkaian digital, transistor biasanya beroperasi pada daerah saturasi dan cutoff. Daerah breakdown biasanya dihindari karena resiko transistor menjadi hancur terlalu besar.
Gelombang I/O Transistor
Bagian emitter-basis dari transistor merupakan dioda, maka apabila dioda emitter-basis dibias maju maka kita mengharapkan akan melihat grafik arus terhadap tegangan dioda biasa. Saat tegangan dioda emitter-basis lebih kecil dari potensial barriernya, maka arus basis (Ib) akan kecil. Ketika tegangan dioda melebihi potensial barriernya, arus basis (Ib) akan naik secara cepat.

Penguatan Tegangan Open-loop atau Av = ∞ (tak terhingga)Tegangan Offset Keluaran (Output Offset Voltage) atau Voo = 0 (nol)Impedansi Masukan (Input Impedance) atau Zin= ∞ (tak terhingga)Impedansi Output (Output Impedance ) atau Zout = 0 (nol)Lebar Pita (Bandwidth) atau BW = ∞ (tak terhingga)Karakteristik tidak berubah dengan suhu
Pengaplikasian
Inverting Amplifier
NonInverting
Komparator
Adder
Bentuk Gelombang
- Gerbang AND
- D Flip Flop
- Vin : dc 5v 9v.
- Radius : 180 derajat.
- Jarak deteksi : 5 7 meter.
- Output : digital ttl.
- Memiliki setting sensitivitas.
- Memiliki setting time delay.
- Dimensi : 3,2 cm x 2,4 cm x 2,3 cm.
- Berat : 10 gr.
- Sensor PIR
Spesifikasi:
- Sensor HIH-5030
-
Model: | NF101 |
Category: | Single point load cells |
Capacity: | 50,100,200,500N |
Rated Output: | 1.0±20%mV/V |
Material: | Stainless steel |
Protection Class: | IP65 |
- Supply Voltage: 3V to 18V
- Maximum Quiescent Current: 5µA at 15V
- Maximum Operating Current: 3mA at 15V
- Maximum Power Dissipation: 500mW
- Input Voltage High Level (VIH): 3.5V to 18V
- Input Voltage Low Level (VIL): 0V to 1.5V
- Output Voltage High Level (VOH): 90% of supply voltage
- Output Voltage Low Level (VOL): 10% of supply voltage
- Operating Temperature Range: -55°C to +125°C
- CounterGambar 3.3 Rangkaian Counter Asyncronous
- 7 Segment Anoda
Seven segment merupakan bagian-bagian yang digunakan untuk menampilkan angka atau bilangan decimal. Seven segment tersebut terbagi menjadi 7 batang LED yang disusun membentuk angka 8 dengan menggunakan huruf a-f yang disebut DOT MATRIKS. Setiap segment ini terdiri dari 1 atau 2 LED (Light Emitting Dioda). Seven segment bisa menunjukan angka-angka desimal serta beberapa bentuk tertentu melalui gabungan aktif atau tidaknya LED penyususnan dalam seven segment.
Supaya memudahkan penggunaannnya biasanya memakai sebuah sebuah seven segment driver yang akan mengatur aktif atau tidaknya led-led dalam seven segment sesuai dengan inputan biner yang diberikan. Bentuk tampilan modern disusun sebagai metode 7 bagian atau dot matriks. Jenis tersebut sama dengan namanya, menggunakan sistem tujuh batang led yang dilapis membentuk angka 8 seperti yang ditunjukkan pada gambar di atas. Huruf yang dilihatkan dalam gambar itu ditetapkan untuk menandai bagian-bagian tersebut.
Dengan menyalakan beberapa segmen yang sesuai, akan dapat diperagakan digit-digit dari 0 sampai 9, dan juga bentuk huruf A sampai F (dimodifikasi). Sinyal input dari switches tidak dapat langsung dikirimkan ke peraga 7 bagian, sehingga harus menggunakan decoder BCD (Binary Code Decimal) ke 7 segmen sebagai antar muka. Decoder tersebut terbentuk dari pintu-pintu akal yang masukannya berbetuk digit BCD dan keluarannya berupa saluran-saluran untuk mengemudikan tampilan 7 segmen.
Tabel Pengaktifan Seven Segment Display
Rangkaian full subtractor memiliki tiga buah input yaitu A (minuend), B (subtrahend), dan Bin (borrow in), serta dua output yaitu D (Difference) dan Bo (Borrow out). Untuk memahami kerja full subtractor secara menyeluruh, kita perlu menganalisis seluruh kombinasi input biner 3-bit (sebanyak 8 kombinasi). Perhitungan dilakukan berdasarkan rumus:
Berdasarkan tabel tersebut, kita dapat melihat bagaimana output D dan Bo berubah sesuai dengan perubahan kombinasi input. Misalnya, saat A=0, B=1, dan Bin=0, maka:
Jadi hasilnya:
- D3 D2 D1 D0 = 0000
- BOUT = 1
Artinya, 1011 - 0101 = 0000 dengan pinjaman akhir, menandakan hasil negatif dalam representasi 2’s complement.
2) Dalam implementasi logika full subtractor menggunakan dua half subtractor dan satu gerbang OR, berapakah output-nya jika A = 0, B = 1, dan Bin = 1?
Langkah 1 – Half Subtractor pertama (A - B):
D₁ = A ⊕ B = 0 ⊕ 1 = 1
Bo₁ = A̅ · B = 1 · 1 = 1
Langkah 2 – Half Subtractor kedua (D₁ - Bin):
D = D₁ ⊕ Bin = 1 ⊕ 1 = 0
Bo₂ = D₁̅ · Bin = 0 · 1 = 0
Langkah 3 – Gabungkan borrow:
Bo = Bo₁ + Bo₂ = 1 + 0 = 1
Jadi output akhirnya:
Borrow Out (Bo) = 1
Ini berarti hasil 0 - 1 - 1 adalah negatif (terjadi peminjaman).
6. Soal Pilihan Ganda[Kembali]
Saat sensor MPXA6115A6U mendeteksi tekanan >30KPa maka tegangan 0.29 V akan diumpankan ke kaki non inverting Op Amp yang bekerja sebagai Detektor Non Inverting. Rumus Vout = (V1-V2) x Aol. Dimana V1 adalah tegangan di kaki non inverting dan V2 adalah tegangan di kaki inverting. Jadi di dapatkan (0.29 - 0.28) * 200.000 = 2000 dimana hasilnya bernilai + dan nilai tegangan output akan mendekati nilai Vsat+. Disini nilai tegangan output detektor adalah +3.99V yang nantinya diumpankan pada maka input D FlipFlop berlogika 1 dan saat CLK berlogika 1 maka output Q akan berlogika 1 begitu seterusnya hingga sensor PIR berlogika. Output Q dari D flipflop masuk dan diteruskan kepada resistor dan diumpankan ke kaki base transistor. Vbe yang terdeteksi sebesar +0.78V sehingga transistor on karena Vbe telah melebihi +0.6V. Akibat dari transistor on adalah, arus dari power +5V akan mengalir ke relay dan terus ke kaki kolektor dan menuju kaki emitor lalu ke ground. Maka nantinya switch akan berpindah sehingga terbentuk loop arus baterai pada rangkaian motor untuk menjahit karung on.
PIR berlogika 1 dan output dari sensor masuk ke kaki up counter 74193 dan membuat counter akan enghitung dari 1 dan berhenti pada angka ke 9 dimana setelah angka ke 9 kaki MR (Master Reset ) akan aktif dan membuatnya kembali menghitung ke 0. saat angka 9 tertrigger maka TCU akan tertrigger dan mengantifkan kaki UP pada counter kedua dan meghasilkan angka 1 pada seven segment. Lalu nantinya MR pada counter kedua juga akan aktif sehingga counter kembali ke adaan semula 00. Selain itu tegangan sebesar 5V dan diteruskan kepada resistor dan diumpankan ke kaki base transistor. Vbe yang terdeteksi sebesar +0.78V sehingga transistor on karena Vbe telah melebihi +0.6V. Akibat dari transistor on adalah, arus dari power +5V akan mengalir ke relay dan terus ke kaki kolektor dan menuju kaki emitor lalu ke ground. Maka nantinya switch akan berpindah sehingga terbentuk loop arus baterai pada rangkaian dan karung dipindahkan ke kontainer.
Sensor Load Cell on > 85 maka tegangan 0.59 V akan diumpankan ke kaki non inverting Op Amp yang bekerja sebagai Detektor Non Inverting. Rumus Vout = (V1-V2) x Aol. Dimana V1 adalah tegangan di kaki non inverting dan V2 adalah tegangan di kaki inverting. Jadi di dapatkan (0.29 - 0.28) * 200.000 = 2000 dimana hasilnya bernilai + dan nilai tegangan output akan mendekati nilai Vsat+. Disini nilai tegangan output detektor adalah +3.99V yang nantinya diumpankan pada gerbang AND dan diteruskan kepada resistor dan diumpankan ke kaki base transistor. Vbe yang terdeteksi sebesar +0.78V sehingga transistor on karena Vbe telah melebihi +0.6V. Akibat dari transistor on adalah, arus dari power +5V akan mengalir ke relay dan terus ke kaki kolektor dan menuju kaki emitor lalu ke ground. Maka nantinya switch akan berpindah sehingga terbentuk loop arus baterai pada rangkaian motor untuk memindahkan kontainer ke gudang penyimpanan on.
Sensor HIH-5030 > 70% on, tegangan 3.26 V akan diumpankan ke kaki non inverting Op Amp yang bekerja sebagai Detektor Non Inverting. Rumus Vout = (V1-V2) x Aol. Dimana V1 adalah tegangan di kaki non inverting dan V2 adalah tegangan di kaki inverting. Jadi di dapatkan (3.26 - 3.25) * 200.000 = 2000 dimana hasilnya bernilai + dan nilai tegangan output akan mendekati nilai Vsat+. Disini nilai tegangan output detektor adalah +3.98V yang lalu diumpankan ke kaki B demux sehingga keluaran dari demux adalah 1 0 1 1 yang nantinya diumpankan pada gerbang AND dan diteruskan kepada resistor dan diumpankan ke kaki base transistor. Vbe yang terdeteksi sebesar +0.78V sehingga transistor on karena Vbe telah melebihi +0.6V. Akibat dari transistor on adalah, arus dari power +5V akan mengalir ke relay dan terus ke kaki kolektor dan menuju kaki emitor lalu ke ground. Maka nantinya switch akan berpindah sehingga terbentuk loop arus baterai pada rangkaian pembuka rollet. Sehingga motor yang berfungsi untuk menghidupkan dehumidifier akan on.
Download Datasheet Sensor:
- datasheet Preasure [disini]
- datasheet Load Cell [disini]
- datasheet Sensor Pir [disini]
- datasheet Sensor HIH 5030 [disini]
Download datasheet Seven Semen[disini]
Download datasheet Relay[disini]
Download datasheet Motor [disini]
Download datasheet Led [disini]
Download datasheet Op Amp [disini]
Download datasheet IC 4013 [disini]
Download datasheet IC 74112[disini]
Download datasheet Potensiometer [disini]
Download datasheet Resistor [disini]





























.jpeg)
.jpeg)
























.jpeg)










Komentar
Posting Komentar